Part Xl : Matrices de transformation, maclage mécanique

Plan
1. Brefrésumeé du cours antérieur sur les matrices de passage
2. Matrice d’'orientation, distorsion et correspondance matrices
3. Application au maclage de déformation (mécanique)

Obijectif

Expliqguer comment utiliser les matrices d'orientation T associée a une
relation d’orientation. Introduire la matrice de distorsion F qui transforme un
réseau de phase parent en réseau de phase fille. Montrer que T est passive
et F active, et comment la combinaison des deux génere la matrice de
correspondance C.

Nous appliquerons ces concepts au cas du maclage mécanique (résultant
de contraintes de cisaillement)
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1. Résumeé du cours antérieur: matrices

Matrices de passaqge (coordinate transformation matrices)

p . PR ) )/ 4 .
Définition [B—)B ] Ses colonnes sont les vecteurs de la base B’ écrites dans la base B

e

Composition [B_) "] — [B_)B’] [B’_)B"] Ce sont des matrices passives, elles se
composent de gauche a droite.
Inverse [B'>B] = [B—>B']?

;. M -t * = réseau réciproque et -t = inverse de la
Reciproque [B_)B ] — [B_)B ] transposé. A utiliser pour changer les
— coordonnées des plans.
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1. Résumé du cours antérieur: espace réciproque

Réseau cristallin donné par ||a||, ||b]l, |Ic|l, et « = (b,c),8 = (a,c),y = (a, b)

~ a’ ba ca
G=[B*—>B]=|ab b? cb|,G=G, G*=G1
ac bc c?

Réseau
= ensemble des directions u a coordonnées entieres (réseau direct)
= ensemble de plans p a indices de Miller entiers (réseau réciproque)

Convention du cours: un vecteur u ou p est un vecteur colonne, et u*
ou pt un vecteur ligne

Pour des vecteurs du réseau directuetv,uv=u'Gv, et|[u/|? =u'Gu
= calcul des normes et des angles entre directions cristallines

Un plan cristallin p = (h,k,l) indices de Miller, est assimilable a son vecteur normal dont les coordonnées sont
pt = (h,k,l) dans le réseau réciproque

1 . . .
La norme de ce vecteur est ||p]| = ——avec dn; distance interplanaire

hkl

Pour des vecteurs du réseau réciproque petg, , p-g = pt G g, et |[|[pll? =pt G~ p
= calcul des normes et des angles entre plans

La normale a un plan p = (h,k,|) a pour coordonnées dans le réseau direct G™1p

La loi de Laue donne la condition de diffraction, elle dit que les ondes diffusées sont en phase lorsque Ak = p
La loi de Bragg se déduit en égalisant les normes, sachant que ||Kk|| = |[k,|| = 1/A
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1. Résumé du cours antérieur

Formules d'inversion de matrice

Inversion des matrices 2x2

L'équation des cofacteurs ci-dessus permet de calculer l'inverse des matrices de dimensions 2x2 : siad — bc # 0,

A=[° b , comA = d  —c , ‘com A = d _b,
d -b a —c a

C
-1
A_lz(a b) _ 1 (d —b)
c d ad—bc\—-c a /)
Exemple
(1 2)_1_L(4 —2)
3 4)  —2\-3 1)

Inversion des matrices 3x3

a b c
De méme, on obtient l'inverse dune matrice A= | d e f | de dimension 3x3 en calculant son déterminant (par la régle de Sarrus, par exemple)
g h 1

det A = aei + bfg + cdh — ceg — fha — ibd,

puis en utilisant la formule :
ei—fh ch—bi bf—ce
= qetd ch—bi ai—cg bg—ah = Gt A fg—di ai—cg cd—af
bf —ce cd—af ae—bd dh—eg bg—ah ae—bd

e\t | ifei—fh fg—di dh—eg

N

a b
At=1|d e
g h i

Phase transformations Xl - &
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1. Résumeé du cours antérieur: OR

La relation d’orientation (OR) qui peut étre observée et déterminée en TEM ou en EBSD ne dit
rien sur le mécanisme sous-jacent qui peut étre diffusif ou displacif.

- Matrice (ex: Al)
Les précipités ont souvent une OR avec la matrice pour atrice (ex: Al)

minimiser les incompatibilités de réseau cristallins (misfits) et Si My

réduire ainsi I'énergie de d’'interface. Les atomes de solutés <7‘\<:>\7:> ©>
initialement en solution solide vont migrer indépendamment les >< —
uns des autres (civilian way) et s’organiser pour former peu a peu . ; 0

le précipité et sa structure. Les phases nanométriques initiales Precipité hcp
sont souvent juste des clusters d’atomes qui ne forment pas T
nécessairement un réseau bien défini.

Les transformations martensitiques et le maclage Austenite (ex: Fe)
meécaniques impliquent toujours une OR la encore pour shear

minimiser I'énergie d’interface. La transformation se fait sans Ef! =
diffusion. Les atomes se déplacent collectivement (militar way). Q / /N
Le réseau de la phase parent est déeforme (distorted) en un VARV /
nouveau réseau, celui de la phase fille martensitique. Martensite hep

= Deux mécanismes tres différents, mais tous les deux avec une OR (ici la méme)
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2. Orientation, distorsion et correspondance, et leurs matrices

Préambule: bases primaire et «conventionnelle»

Dans la figure a gauche, on préfere la maille rectangle centrée a
deux atomes plutdt que la maille primitive (a un atome) losange.
La raison, selon moi discutable, est la suivante: «les mailles
conventionnelles sont représentatives de la symétrie totale, ses
vecteurs directeurs étant paralleles aux axes de symétrie : on
travaillera toujours dans ces derniéres»

A

Triclinique Monoclinique Hexagonal Rhomboédrique Orthorhombique | Quadratique Cubique
azb#c azb#c a=b#c a=b=c azb#c a=b#c a=b=c
aFPAy#90° a=P=90° et y#90° | a=p=90° et y=120° a=p=y£90 a=p=y=90° a=B=y=90° o=p=y=90
Primitif “'l _ ' :
fl i _

Les réseaux de Bravais (il y Maile
enaben 2D et 14 en 3D) !
sont construits sur ces Deus
bases conventionnelles ol
C

Faces
centrées
F

E PF L Transformation matrices
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https://culturesciences.chimie.ens.fr/thematiques/chimie-des-materiaux/solides-cristallins/un-siecle-de-cristallographie-de-la-maille-0

2. Orientation, distorsion et correspondance, et leurs matrices

La matrice de distorsion transforme la base cristallographique « conventionnelle » de la
phase parent y notée B” en une base distordue B, qui est une base cristallographique de la

martensite a, et donc F = [B” -B"].
Si B/, est elle-aussi une base « conventionnelle » pour la phase «, cad B” =B, alors |l
n’y pas de distinction entre les matrices d’orientation et de distorsion, F =T = [B" -»B“|.
C’est le cas de I'exemple ci-dessous:

Exemple: y carré PAmm — a hexagone 6mm

bOL
aOC
Réseau de Bravais de la phase Réseau de Bravais de la phase Réseau de Bravais de
parente y avant transformation parente y apres transformation la phase fille o
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2. Orientation, distorsion et correspondance, et leurs matrices

Mais attention, ce n’est pas toujours le cas, notamment quand le @‘\JQ
transformation implique du shuffling ou de la mise en ordre. & %

Exemple : y square PAmm — a rectangle Pmm
Contraction/extension le long
d'axes orthogonaux entre eux

(a) Initial = désordonnée (b) Mise en ordre (sans distorsion, (c) Distorsion « stretch »
cas hypothétique intermédiaire)

, . / ) . N Réseau de

! i Réseau de Bravais de la phase ¢ S, Réseau de Bravais de la phase (\ % Bravais de la

i . / p H .

L___J parentey avant fransformation s »/ parente y apres mise en ordre So // phase fille o
AN /7 N4
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2. Orientation, distorsion et correspondance, et leurs matrices

La matrice de distorsion Fr = [BY — B"].

Elle transforme les vecteurs de la base conventlonnelle de la phase parente y en

de nouveaux vecteurs , Ey = [a b”’ c ']
phasefillee. Un vecteur u est transformeé (tourné, allongé ou rétrécit) par la 44 44
distorsion; son image est un nouveau vecteur u’ dont les coordonnées écrites active
dans B” sont déduites de celles écrites dans BY par u’, = F'u,. La matrice F n'a

de sens que pour les transformations displacives.

La matrice d’orientation (passage) T'>* = [BY — B*]:

Elle donne l'orientation de la base conventionnelle de la phase fille o par rapport Tro>o= [a%, b%, c‘/"y]
a celle de la phase parente y. Elle ne contient pas d’information sur le
mécanisme de transformation. Elle peut étre utilisée pour des transformations
displacives ou diffusives. Les coordonnées d’un vecteur fixe u écrites dans la
base conventionnelle de o et celles dans la base conventionnelle de y sont liées
par I'équation u,, = T*>*u,,. Nous avons aussi u,, = T*?7 u, avec T*>7 = (Tr>* )1

passive

La matrice de correspondance C¢> = [B* — B!']. Elle donne en quel vecteur

de la phase fille un vecteur de la base conventionnelle de la phase parent est Comr= [a/a by’ C/a]
transformé. Elle peut se comprendre comme la combinaison de la distorsion
suivie du changement de coordonnees u’,,= Te>vu’, = T*>" Fru, ce qui s’écrit
uw’,, =C*>ru,

rationnelle
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2. Orientation, distorsion et correspondance, et leurs matrices

Exemple : y hexagonal PEmm — y hexagonal P6mm (cas purement théorique, macle iso-orientation)

btwin

bY

Contrainte de cisaillement

atW|n

Si le cristal a cette
forme la avant
transformation

m Cristal parent y Cristal fille y ﬂ

Il aurait cette forme ci
apres transformation

« Comme a’ = a’et b" = ar+b¥. La matrice de distorsion est Fr = [(1) 1

(F est écrite dans la base hexagonale).

« Comme a™n = aret b™n = p7. La matrice d’orientation est T>Win = [é (1)

« Comme a'— aWnet by — aWin+ pbWin- | 3 matrice de correspondance est CWin-v = [(1) 1
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2. Orientation, distorsion et correspondance, et leurs matrices

Relations utiles Co=y = To>y [ PN Tr—o= Fr Croo

 La matrice C est 'identité ssi av — a*, bY — b?%, ¢ — ¢%, cad si la base conventionnelle de la
|:> phase parente est distordue en une base conventionnelle de la phase fille.

« Les éléments de C sont entiers ou rationnels car C transforme nécessairement une direction
cristallographique de la phase parente en une direction cristallographique de la phase fille.

Transformations inverses Transformation dans I'espace réciproque Changement de volume molaire
V,
To> = (Tv—>oc)—1 (To>Y)*= (Toc—w)—t det(FY) = —
1%
Co>Y = (Cy—)oc)—l (Ca—)y)*: (Coc—)y)—t ’

C
7k
Fo = (FY) ™1 en général (F)*= (F")t //
b’
2
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2. Orientation, distorsion et correspondance, et leurs matrices

Exemple y carré P4Am — o rectangle Pmm

Revenons a I'exemple de la transformation de la phase parente carrée y en phase ordonnée
rectangle a. Les bases conventionnelles sont B' = (a7, bY) et B> = (a%, b%).

Les nceuds du réseau A, B et C deviennent A, B’ et C’ tels que OA' = 6 OA avec 6 > 1 et nous
simplifions le probleme en prenant OC = OC’.

= Calculez Fr , Tr>> et C*>Y

Phase parente Phase fille

O = 50%@ 50% 0
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2. Orientation, distorsion et correspondance, et leurs matrices

On utilise la base intermédiaire B,Y= (a,”, b,") et la matrice de passage associée [B'— B,"] = (1 _11)

Dans cette base B," la matrice de distorsion est F,*=[B,*— B"] = ((1) g)

Apres distorsion de réseau, B,;"' = B>,

. . 1+56 1-90
La matrice de distorsion peut s’écrire dans BY directement en écrivant F' = [B— B,"] F,*[B*— B,"]* = % <(( 1t 6)) E 1+ 63)

Suivons comment changent les directions a’ , b" . Aprés transformation:

14 v _l.a _na 14 v _ 1. «a a o>y — 1/2 1/2) (1l -1
a’ —»>a —z(a b*)et b" >b —2(a +b%) = C—W—(_l/z 1/2 et C~ —(1 1)

1

1 _68) par calcul direct ou en appliquant T">* = Fr Cr>¢

La matrice d’orientation est T*>% = [B*— B%] = (
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2. Orientation, distorsion et correspondance, et leurs matrices

bly bly’ X 8>1
Exemple P6m —Pmm

a,’ : a
1 , b
by == &1’
bY 4 Distorsion
Ny —= ,
VA4 al =)
Br= (a7, b?) . On introduit la base intermédiaire B,* = (a,, b,"), avec [B"—>B,"] = (1 1)-

0 2
Dans cette base la matrice de distorsion est F,*= [B,*—>B,"] = (1 0

0 6) avec 0 > 1. La méme distorsion écrite
dans Best F' = ((1) ;) ((1) g) ((1) ;)_1 _ (1 %(6 - 1))

aO(

0 )
La matrice de correspondance se détermine en considérant a» — a* = a% , br— b7 = —% a* + % b . Donc
1 -3 | 11
Cor= .~ |- Etson inverse est C*>*= ( )
0 = 0 2
2

La matrice d’orientation est Tr>o= Fr Cra = ((1) 268)

Elle pourrait étre obtenue par T>*= [B*—B,"] [B,'—>B,"] [B,¥—>B%] avec B, =B,
1 Ih/1 O_/1 O
(o 2) (0 6)‘(0 28)
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3. Maclage de deformation

Définition: D’'une maniere générale, une macle est une désorientation particuliere (non
due au hasard) entre deux cristaux de méme phase

Trois sortes de macles: /Ik'j! E& @:}ﬁ‘

« Les macles de croissance ou de
recuit qui apparaissent pendant la Japanese (growth) twins of
croissance d’un cristal depuis le quartz (Hanz & Klapper, 2003)
liquide ou pendant une
recristallisation.

A H H \ lide .
« Les macles de déformation qui sl | ! f§ i, ,
: \ g!:‘:zlion
(a)

résultent d’'une distorsion de réseau p
sous contrainte. Deformation twinning of calcite

23 annealing twins in a 304 steel

« Les macles de transformation qui
sont les relations entre variants
générés par le méme grain parent.

EPFL Transformation matrices Phase transformations Xl - 15



3. Maclage de deformation

Le maclage mécanigue est un mode de déformation plastique tres important dans les métaux hcp
comme Mg (car peu de systemes de glissement), et dans les aciers TWIP (Twinning Induced Plasticity)
dont la grande quantité de Mn aréduit 'éenergie de faute d’empilement. Le concept « TWIP» a été étendu
ces derniéres années aux alliages cuivre avec Al ou Ti, et aux alliages de titane avec Mo ou Nb.

Acier TWIP

Undeformed sample

Deformed sample (uniform elongation of 70%)

TWIP steel (X5 Mn Al Si 25 3 3)

Undeformed sampl

Sample after twisting by 1080° (T; = 20 °C)

A -

001 101

The effect of grain size and grain orientation on deformation twinning in a
Fe—22 wt.% Mn-0.6 wt.% C TWIP steel, I. Gutierrez-Urrutia, S.
Zaefferer, D. Raabe, 2010.

Cuivre TWIP

Increasing Al content
Wavy-slip Planar-slip & deformation twinning

Strength
//
&
i
/

/

[

|

N \)
\ V A
\f ’\’

N
S
S

’ S~
w "~ Macroscopicproperties

Plasticity

Microscopic mechanisms contributing to the synchronous improvement
of strength and plasticity (SISP) for TWIP copper Alloys, R. Liu, Z. J.
Zhang, L. L. Li, X. H. An & Z. F. Zhang, Sci. Rep (2014)
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3. Maclage de déformation

La transformation martensitique et le maclage mécanique sont displacifs.

Martensite Maclage

Martensite
plates

-

Parent | Twinned
grain plate

Rayure (était droite avant
transformation)

» Deéflexion des rayures de surface faites préalablement a la transformation.

* Formation d’un relief en surface, visible en AFM ou en microscopie confocale.

« Deéformations plastiques entre la phase parente et la phase fille, mesurable en RX ou en EBSD

» Les dislocations créées bloquent la propagation de la transformation, ce qui explique pourquoi il
faut continuer a baisser la température sous T, pour que la transformation progresse, et
I'hystérésis thermique associé.
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3. Maclage de déformation

Le maclage mécanique (deformation twinning) est obtenu par
cisaillement simple sur un plan cristallin p le long d’'une direction d
de telle maniére que le réseau se retrouve « restauré » mais dans
une nouvelle orientation. Le maclage n’est rien d’autre qu'une
transformation displacive générée par contrainte dans laquelle la

phase parente et la phase fille sont identiques. Le maclage peut aller (K,) (K)

a la vitesse du son (cri de I'étain).

Il y a deux plans spéciaux: le plan de maclage p qui reste invariant d _
noté K, et un plan qui « bascule » noté K, dans le maclage de type . S = o tan 6 = 5
L’amplitude de maclage s est lié a 26 I'angle de basculement

o~ s = = = = mm = Cas du maclage mécanique dans les fcc:
d N
i : | dE A\ | « Le plan de maclage est p = K, = (111) )
' : « Ladirection de cisaillement est d = n; = [112]
p p |
| | 1
A '~ S e Cas du maclage mécanique dans les bcc:
‘ VARV IRY A « Le plan de maclage est p = K, = (112). )
>, NWARIES « Ladirection de cisaillement est d = n; = [111]
7 : ) : i
! | 1
——-L_f_L_

Notez que ces deux systéemes de maclage sont les conjugués 'un
de l'autre, cad K, fcc = K, bcc et n, fcc = n, bee

E PF L Transformation matrices
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3. Maclage de déformation

La notation (K., n,, K,, n,), la distinction entre type | et Il, ainsi que des formules de maclage
ont été établies par Mligge en 1889.

Type I

Input : plan cristallin p = K;

Calcul : T = miroir sur K;

Choix: direction cristalline n, qui va « basculer »
Output: direction de cisaillement d = n; et amplitude s

Type II:
Input : direction cristalline d = n,

Calcul : T = rotation de 180° autour de n,
Choix: plan cristallin K; qui va « basculer »
Output: plan de cisaillement p = K, et amplitude s

Macles mixtes: (K,, n,, K,, n,) sont tous cristallins

: : Note 1: Les macles de type Il pour le réseau direct sont des
« K, plan cristallin os d | e re . _
. n, direction Type | macles de types | pour le réseau réciproque, et vice-versa.
1
© Ky p_Ian _ _ _ Type I Note 2: K = plane (n, , n,). Pas de rble dans la théorie
* m,direction cristalline classique.
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3. Maclage de déformation

Typel Type i
* p =K, rationnel * d =mn,rationnelle
« 1, rationnelle (close to n = G~ !p) « K,rationnel (closetodt = G d)
=d=n;=1m, -M, = p=K,=(d, ¢) avecl=dnK;
A
\i)lg(f Réseau parent K’y
d =n Réseau macle
=,
Strateq = —
I
nz | n,z
0,
K
| K ed}/ 1
=W\ AR
Al
e NMe
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3. Maclage de déformation

Quelgues remarques

 Les macles de type | et Il pour un méme
couple (K, n,) sont dites conjuguées

« Elles ont toutes deux la méme amplitude
.. d
cisaillement s = -

» Les calculs des éléments de maclage
(Ky mqs Ky, m,) peuvent étre réalises avec
des supercellules (supercells). Cette idée a
été introduite par Friedel en 1904. Le
volume de la supercellule divisé par le
volume de la cellule unitaire est appelé T

Exemple de supercellule (uvw),q=2

E PF L Transformation matrices

Phase transformations Xl - 21



Pour info 3. Maclage de deformation/croissance

Friedel (1904) était intéresseé par les macles de Y ¢
croissance dans les minéraux. |l existe de i n
nombreuses phases en minéralogie, et certaines M|y M2
ont une métrique proche d’'une phase de plus L
haute symétrie, par exemple une phase 0
monoclinique avec B = 90° sera proche de la
phase orthornombique ( = 90°).

K,=(hkl K,=(hkl

Les macles de type | déterminees par Friedel sont celles dont la normale au plan cristallin
K, = (h k1) est proche d’'une direction rationnelle. Plus précisément lorsque n = G !p est
un vecteur du réseau direct proche d’'un vecteur a coordonnées entiéres, cad d’'une
direction cristalline n,. L'angle 6 entre les directions n and n, est appelé obliquité.

« Dans les minéraux ou les ferroélectriques les macles qui se forment ont toutes une
faible obliquité (6 < 5°), et donc une faible amplitude de cisaillement (s < 0.2).

« Les macles en métallurgie peuvent avoir des s > 0.2. Par exemple, les macles

111)<112> des fcc ou (112) <111>ontun s = 2 o 0,71.
( 5
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3. Maclage de déformation

Bevis & Crocker (1968) ont établi des formules de calculs sur la base de
I'équation C = T F sachant que T doit étre d’ordre deux, soit une rotation de 180°
ou un plan miroir. Pour les macles de type I, ils ont montré que:

L'amplitude de maclage s est donné par la matrice de correspondance C par:

Amplitude s s? =Tr(C'GCG™1) —dim | avecdim=2en 2D, ou3en3D

Si on connait la direction de cisaillement d dans I'espace direct, le plan de cisaillement p
dans 'espace réciproque, et I'amplitude s, alors la matrice de cisaillement F est donnée par :

—

Matrice de " . |d||?=d'Gd =1
cisaillement F F=I+sdp =1+sd®p JIpIP=p'Gp=1
~ G = tenseur métrique
_ ~__ P q
avec d = — et p= e G = G-1
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3. Maclage de déformation

Vérifiez la formule F =1+ sd.pt

Fd=d carptd = 0, et en fait vrai pour tout vecteur appartenant au plan p

Propriétés * Det(F) = 1 (pas de changement de volume dans le maclage)
 Tr(F) =dim = 3 (cas réels)
« Valeurs propres de F =1 (doublées)
« Vecteurs propres de F forment un espace de dim2 =p
Note:

Le vecteur p est le vecteur unitaire de p ; ses coordonnées sont données dans
I'espace réciproque. On peut noter pour étre plus clair p = n* avec n'le méme
vecteur unitaire mais écrit dans I'espace direct.

De plus:
S>Fii=n+sd
— F peut s’écrire dans le repére 2D (d, i) par la matrice

F/am = ((1) i)
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3. Maclage de déformation

Exemple P6m —P6m

Contrainte de cisaillement simple

b

Cristal parent Cristal « maclé »
(méme si dans cet exemple la nouvelle orientation = I'initiale)

« L’amplitude de cisaillement est s = d/h = a’h = 2/+/3
« Letenseur métrique est G = [_11/2 _11/2] danslecasa=1

« On vérifie qu’en effet s? = Tr(C'GCG™1) —2 = 4/3

Note: Cette macle “iso-orientation” n'est qu'un cas purement théorique. Elle restaure le
réseau cristallin dans son orientation initiale car le vecteur de déplacement est aussi
un vecteur de Burgersd =b = a.
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Résumeé

bY
bY Distorsion ha
%ay o ary <

aa
Pour toute transformation displacive, nous avons
o . . . . — ')/I ’yl ’yl .
Matrice de distorsion: F'=la), b v € /yl (active)
« Matrice d’orientation: Too=[af, bf, cf ] (passive)
- Matrice de correspondance: Coor=al, bl c}/(;] = To1 F (rationnelle)

Le maclage mécanique peut étre traité comme une transformation martensitique.
La théorie de Bevis & Crocker donne la valeur de 'amplitude de cisaillement s en
fonction de la matrices de correspondance et du tenseur métrique. La matrice de
distorsion peut étre ensuite calculée directement avec la valeur de s, du plan et de
la direction de cisaillement.
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