
Phase transformations XI - 1Transformation matrices

Plan

1. Bref résumé du cours antérieur sur les matrices de passage

2. Matrice d’orientation, distorsion et correspondance matrices

3. Application au maclage de déformation (mécanique)

Part XI : Matrices de transformation, maclage mécanique

Objectif

Expliquer comment utiliser les matrices d’orientation T associée à une

relation d’orientation. Introduire la matrice de distorsion F qui transforme un

réseau de phase parent en réseau de phase fille. Montrer que T est passive

et F active, et comment la combinaison des deux génère la matrice de

correspondance C.

Nous appliquerons ces concepts au cas du maclage mécanique (résultant

de contraintes de cisaillement)
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Matrices de passage (coordinate transformation matrices)

BB" = BB′ B′B"

BB′ Ses colonnes sont les vecteurs de la base B’ écrites dans la base B• Définition

• Composition

• Inverse

• Réciproque

Ce sont des matrices passives, elles se 
composent de gauche à droite.

1. Résumé du cours antérieur: matrices

B′B = BB′ -1 

BB′ ∗ = BB′ −t * = réseau réciproque et -t = inverse de la 
transposé. A utiliser pour changer les 

coordonnées des plans.

𝐮/1 = [B1 B2] 𝐮/2 Directions

𝒈/1 = B1 B2
∗ 𝐠/2 Plans
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a
b

O

G = [B*  B] =
𝐚2 𝐛𝐚 𝐜𝐚
𝐚𝐛 𝐛2 𝐜𝐛
𝐚𝐜 𝐛𝐜 𝐜2

, G = Gt , G* = G-1

Réseau cristallin donné par 𝐚 , 𝐛 , 𝐜 , et 𝛼 = 𝐛, 𝐜 , 𝛽 = 𝐚, 𝐜 , 𝛾 = 𝐚, 𝒃

Pour des vecteurs du réseau direct 𝐮 et 𝐯, 𝐮𝐯 = 𝐮t G 𝐯, et 𝐮 𝟐 = 𝐮t G 𝐮
⇒ calcul des normes et des angles entre directions cristallines

Un plan cristallin p = (h,k,l) indices de Miller, est assimilable à son vecteur normal dont les coordonnées sont

𝐩t = (h,k,l) dans le réseau réciproque

La norme de ce vecteur est 𝐩 =
1

𝑑ℎ𝑘𝑙
avec 𝑑ℎ𝑘𝑙 distance interplanaire

Pour des vecteurs du réseau réciproque 𝐩 et 𝐠, , 𝐩𝐠 = 𝐩t 𝐆−1𝐠, et 𝐩 𝟐 = 𝐩t 𝐆−1𝐩
⇒ calcul des normes et des angles entre plans

La normale à un plan p = (h,k,l) a pour coordonnées dans le réseau direct 𝐆−1𝐩

La loi de Laue donne la condition de diffraction, elle dit que les ondes diffusées sont en phase lorsque k = 𝐩
La loi de Bragg se déduit en égalisant les normes, sachant que 𝐤 = 𝐤0 = 1/

Réseau 

= ensemble des directions u à coordonnées entières (réseau direct)

= ensemble de plans p à indices de Miller entiers (réseau réciproque)

Convention du cours: un vecteur u ou p est un vecteur colonne, et 𝐮t

ou 𝐩t un vecteur ligne

1. Résumé du cours antérieur: espace réciproque
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Formules d’inversion de matrice

1. Résumé du cours antérieur
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Les précipités ont souvent une OR avec la matrice pour 

minimiser les incompatibilités de réseau cristallins (misfits) et 

réduire ainsi l’énergie de d’interface. Les atomes de solutés 

initialement en solution solide vont migrer indépendamment les 

uns des autres (civilian way) et s’organiser pour former peu à peu 

le précipité et sa structure. Les phases nanométriques initiales 

sont souvent juste des clusters d’atomes qui ne forment pas 

nécessairement un réseau bien défini. 

Les transformations martensitiques et le maclage 

mécaniques impliquent toujours une OR là encore pour 

minimiser l’énergie d’interface. La transformation se fait sans 

diffusion. Les atomes se déplacent collectivement (militar way). 

Le réseau de la phase parent est déformé (distorted) en un 

nouveau réseau, celui de la phase fille martensitique.

shear

 Deux mécanismes très différents, mais tous les deux avec une OR (ici la même)

Matrice (ex: Al)

Precipité hcp

Martensite hcp

Austenite (ex: Fe)

1. Résumé du cours antérieur: OR

Si
Mg

La relation d’orientation (OR) qui peut être observée et déterminée en TEM ou en EBSD ne dit 

rien sur le mécanisme sous-jacent qui peut être diffusif ou displacif. 
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2. Orientation, distorsion et correspondance, et leurs matrices

Préambule: bases primaire et «conventionnelle» 

aP

bP

bC

aC

Dans la figure à gauche, on préfère la maille rectangle centrée à 

deux atomes plutôt que la maille primitive (à un atome) losange. 

La raison, selon moi discutable, est la suivante: «les mailles 

conventionnelles sont représentatives de la symétrie totale, ses 

vecteurs directeurs étant parallèles aux axes de symétrie : on 

travaillera toujours dans ces dernières»
https://culturesciences.chimie.ens.fr/thematiques/chimie-des-materiaux/solides-cristallins/un-siecle-de-cristallographie-de-la-

maille-0

Les réseaux de Bravais (il y 

en a 5 en 2D et 14 en 3D) 

sont construits sur ces 

bases conventionnelles

https://culturesciences.chimie.ens.fr/thematiques/chimie-des-materiaux/solides-cristallins/un-siecle-de-cristallographie-de-la-maille-0
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La matrice de distorsion transforme la base cristallographique « conventionnelle » de la 

phase parent  notée B𝛾
en une base distordue B𝛾

′ qui est une base cristallographique de la 

martensite , et donc F = B𝛾
B𝛾′

.

Si B𝛾
′ est elle-aussi une base « conventionnelle » pour la phase , càd B𝛾′

= B𝛼 , alors il 

n’y pas de distinction entre les matrices d’orientation et de distorsion, F = T = B𝛾
B𝛼 .

C’est le cas de l’exemple ci-dessous:

Exemple:  carré P4mm  hexagone 6mm

b β

a'

b’ β'



a

b

a



2. Orientation, distorsion et correspondance, et leurs matrices

Réseau de Bravais de la phase 
parente  avant transformation

Réseau de Bravais de la phase 
parente  après transformation

Réseau de Bravais de 
la phase fille 
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Mais attention, ce n’est pas toujours le cas, notamment quand le 

transformation implique du shuffling ou de la mise en ordre.

Exemple :  square P4mm  rectangle Pmm

(a) Initial = désordonnée

b β

a

(b) Mise en ordre (sans distorsion, 
cas hypothétique intermédiaire)

(c) Distorsion « stretch »




b’ β'

a’
A B

Contraction/extension le long 
d’axes orthogonaux entre eux

Réseau de Bravais de la phase 
parente  avant transformation

Réseau de Bravais de la phase 
parente  après mise en ordre

Réseau de 
Bravais de la 
phase fille 

2. Orientation, distorsion et correspondance, et leurs matrices
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La matrice de distorsion F = [B𝛾
 B𝛾′

]. 

Elle transforme les vecteurs de la base conventionnelle de la phase parente  en 

de nouveaux vecteurs qui forment une base (conventionnelle ou non) pour la 

phase fille . Un vecteur u est transformé (tourné, allongé ou rétrécit) par la 

distorsion; son image est un nouveau vecteur u’ dont les coordonnées écrites 

dans B sont déduites de celles écrites dans B par u’/ = F u/. La matrice F n’a 

de sens que pour les transformations displacives.

La matrice d’orientation (passage) T = [B𝛾
 B𝛼 ] .

Elle donne l’orientation de la base conventionnelle de la phase fille  par rapport 

à celle de la phase parente . Elle ne contient pas d’information sur le 

mécanisme de transformation. Elle peut être utilisée pour des transformations 

displacives ou diffusives. Les coordonnées d’un vecteur fixe u écrites dans la 

base conventionnelle de  et celles dans la base conventionnelle de  sont liées 

par l’équation u/ = T u/. Nous avons aussi u/ = T u/ avec T = (T )-1

La matrice de correspondance C = [B𝛼 B𝛾′
]. Elle donne en quel vecteur 

de la phase fille un vecteur de la base conventionnelle de la phase parent est 

transformé. Elle peut se comprendre comme la combinaison de la distorsion 

suivie du changement de coordonnées u’/= T u’/ = T F u/ ce qui s’écrit 

u’/ = C u/ . 

C= 𝐚/𝛼
𝛾′

𝐛/𝛼
𝛾′

𝒄/𝛼
𝛾′

T= 𝐚/𝛾
𝛼 𝐛/𝛾

𝛼 𝒄/𝛾
𝛼

passive

F = 𝐚/𝛾
𝛾′

𝐛/𝛾
𝛾′

𝒄/𝛾
𝛾′

active

rationnelle

2. Orientation, distorsion et correspondance, et leurs matrices
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Contrainte de cisaillement

Cristal parent 

h

Cristal fille 

d

btwin

atwin

b

a

• Comme a’ = a et b’ = a + b . La matrice de distorsion est F =
1 1
0 1

(F est écrite dans la base hexagonale). 

• Comme atwin = a et btwin = b . La matrice d’orientation est Ttwin =
1 0
0 1

• Comme a atwin et b atwin + btwin . La matrice de correspondance est Ctwin =
1 1
0 1

Si le cristal a cette 
forme là avant 
transformation

Il aurait cette forme ci 
après transformation

Exemple :  hexagonal P6mm   hexagonal P6mm (cas purement théorique, macle iso-orientation) 

’

b’b

2. Orientation, distorsion et correspondance, et leurs matrices
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Relations utiles C = T F

• La matrice C est l’identité ssi aγ  a, bγ  b, cγ  c, càd si la base conventionnelle de la 

phase parente est distordue en une base conventionnelle de la phase fille.

• Les éléments de C sont entiers ou rationnels car C transforme nécessairement une direction 

cristallographique de la phase parente en une direction cristallographique de la phase fille.

𝐓 ∗= 𝐓 −t

𝐂 ∗= 𝐂 −t

𝐅 ∗= 𝐅 −t

Transformation dans l’espace réciproque 

det 𝐅 =
𝒱′

𝒱

Changement de volume molaire

b’ 
a’ 

c’ 

𝐓 = 𝐓 −1

𝐂 = 𝐂 −1

𝐅 ≠ 𝐅 −1
en général

Transformations inverses

T = F C⟺

2. Orientation, distorsion et correspondance, et leurs matrices
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Revenons à l’exemple de la transformation de la phase parente carrée  en phase ordonnée 

rectangle . Les bases conventionnelles sont B = (a, b) et B= (a, b).

Les nœuds du réseau A, B et C deviennent A’, B’ et C’ tels que OA’ =  OA avec  > 1 et nous 

simplifions le problème en prenant OC = OC’.

 Calculez F , T et C

𝐚
𝛾

𝐛
𝛾

Phase parente Phase fille

𝐚
𝛾

𝐛
𝛾 𝐚𝛼𝐛𝛼

=    50%      50%

A

B
B’

A’

O OB

Exemple  carré P4m  rectangle Pmm

C
C’

2. Orientation, distorsion et correspondance, et leurs matrices
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On utilise la base intermédiaire B1
= (𝐚1

𝛾
, 𝐛1

𝛾
) et la matrice de passage associée [B B1

] =
1 −1
1 1

Dans cette base B1
 la matrice de distorsion est F1

= [B1
 B’] = 

1 0
0 

. 

Après distorsion de réseau, B1
’ = B . 

La matrice de distorsion peut s’écrire dans B directement en écrivant F = [B B1
] F1

 [B B1
]-1  = 

1

2

(1 + ) (1 − )
(1 − ) (1 + )

Suivons comment changent les directions 𝐚
𝛾

, 𝐛
𝛾

. Après transformation:

𝐚
𝛾
 𝐚

𝛾′
=

1

2
𝐚𝛼 − 𝐛𝛼 et 𝐛

𝛾
 𝐛

𝛾′
=

1

2
𝐚𝛼 + 𝐛𝛼  C = 

1/2 1/2
−1/2 1/2

et  C = 
1 −1
1 1

La matrice d’orientation est T = [B B] =
1 −
1 

par calcul direct ou en appliquant T = F C

𝐚
𝛾

𝐛
𝛾

𝐚
𝛾′

𝐛
𝛾′

𝐚𝛼𝐛𝛼

A

B
B’

A’

O O

2. Orientation, distorsion et correspondance, et leurs matrices
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Distorsionb

a

b’

a’

b𝛼

a𝛼
⟺F

a1


b1


B = (a, b) . On introduit la base intermédiaire B1
 = (a1

, b1
), avec [BB1

] =
1 1
0 2

.

Dans cette base la matrice de distorsion est F1
= [B1

B1
′] =

1 0
0 

avec  > 1. La même distorsion écrite 

dans B est F=
1 1
0 2

1 0
0 

1 1
0 2

−1

=
1

1

2
( − 1)

0 

La matrice de correspondance se détermine en considérant a  a’ = a , b b’ = −
1

2
a + 

1

2
b . Donc

C = 
1 −

1

2

0
1

2

. Et son inverse est C  = 
1 1
0 2

.

La matrice d’orientation est T = F C = 
1 

0 2

Elle pourrait être obtenue par T = [BB1
] [B1

B1
′] [B1

′B] avec  B1
′ = B, 

et donc T = [BB1
] [B1

B1
′] =

1 1
0 2

1 0
0 

= 
1 

0 2

a1
’

b1
’ X >1

Exemple P6m Pmm

2. Orientation, distorsion et correspondance, et leurs matrices
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3. Maclage de déformation

Trois sortes de macles:

• Les macles de croissance ou de 

recuit qui apparaissent pendant la 

croissance d’un cristal depuis le 

liquide ou pendant une 

recristallisation. 

• Les macles de déformation qui 

résultent d’une distorsion de réseau 

sous contrainte.

• Les macles de transformation qui 

sont les relations entre variants

générés par le même grain parent.

Définition: D’une manière générale, une macle est une désorientation particulière (non

due au hasard) entre deux cristaux de même phase

3 annealing twins in a 304 steel

Japanese (growth) twins of 
quartz (Hanz & Klapper, 2003)

Deformation twinning of calcite

Deformation twins in Mg at 3% strain

Transformation «twins» in NiTi
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The effect of grain size and grain orientation on deformation twinning in a 

Fe–22 wt.% Mn–0.6 wt.% C TWIP steel, I. Gutierrez-Urrutia, S. 

Zaefferer, D. Raabe, 2010.

Le maclage mécanique est un mode de déformation plastique très important dans les métaux hcp

comme Mg (car peu de systèmes de glissement), et dans les aciers TWIP (Twinning Induced Plasticity) 

dont la grande quantité de Mn aréduit l’éenergie de faute d’empilement. Le concept «TWIP» a été étendu 

ces dernières années aux alliages cuivre avec Al ou Ti, et aux alliages de titane avec Mo ou Nb.

Acier TWIP Cuivre TWIP

Microscopic mechanisms contributing to the synchronous improvement 

of strength and plasticity (SISP) for TWIP copper Alloys, R. Liu, Z. J. 

Zhang, L. L. Li, X. H. An & Z. F. Zhang, Sci. Rep (2014) 

3. Maclage de déformation
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La transformation martensitique et le maclage mécanique sont displacifs.

Parent

grain

Martensite

plates

Parent

grain

Twinned

plate

• Déflexion des rayures de surface faites préalablement à la transformation.

• Formation d’un relief en surface, visible en AFM ou en microscopie confocale.

• Déformations plastiques entre la phase parente et la phase fille, mesurable en RX ou en EBSD 

• Les dislocations créées bloquent la propagation de la transformation, ce qui explique pourquoi il 

faut continuer à baisser la température sous T0 pour que la transformation progresse, et 

l’hystérésis thermique associé.

Martensite

Rayure (était droite avant 

transformation)

Maclage

3. Maclage de déformation
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Le maclage mécanique (deformation twinning) est obtenu par 

cisaillement simple sur un plan cristallin p le long d’une direction d

de telle manière que le réseau se retrouve « restauré » mais dans 

une nouvelle orientation. Le maclage n’est rien d’autre qu’une 

transformation displacive générée par contrainte dans laquelle la 

phase parente et la phase fille sont identiques. Le maclage peut aller 

à la vitesse du son (cri de l’étain).

Il y a deux plans spéciaux: le plan de maclage p qui reste invariant 

noté K1 et un plan qui « bascule » noté K2 dans le maclage de type I. 

L’amplitude de maclage s est lié à 2 l’angle de basculement

Cas du maclage mécanique dans les fcc:

• Le plan de maclage est p = K1 = (111) 

• La direction de cisaillement est d = 1 = [11ത2]

Cas du maclage mécanique dans les bcc:

• Le plan de maclage est p = K1 = (112).

• La direction de cisaillement est d = 1 = [11ത1]

• Notez que ces deux systèmes de maclage sont les conjugués l’un 

de l’autre, càd K2 fcc = K1 bcc et 2 fcc = 1 bcc

h

d

𝑠 =
𝑑

ℎ

d
2d

3d
4d 5d

K2

(K1) (K1)

tan𝜃 =
𝑠

2

K K’

3. Maclage de déformation
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La notation (K1, 1, K2, 2), la distinction entre type I et II, ainsi que des formules de maclage 

ont été établies par Mügge en 1889. 

Type I:   

Input : plan cristallin p =  K1

Calcul : T = miroir sur K1

Choix: direction cristalline 2 qui va « basculer »

Output: direction de cisaillement d = 1 et amplitude s

Type II: 

Input : direction cristalline d = 2

Calcul : T = rotation de 180° autour de 2

Choix: plan cristallin K1 qui va « basculer »

Output: plan de cisaillement p =  K2 et amplitude s

Macles mixtes:  (K1, 1, K2, 2) sont tous cristallins

Note 1: Les macles de type II pour le réseau direct sont des 

macles de types I pour le réseau réciproque, et vice-versa. 

Note 2: K = plane (1 , 2). Pas de rôle dans la théorie 

classique.

• K1 plan cristallin

• 1 direction 

• K2 plan

• 2 direction cristalline

Type I

Type II

K K’

3. Maclage de déformation
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• p = K1 rationnel

• 2  rationnelle (close to 𝐧 = 𝐆−1𝐩)

 d = 1 = 2’ - 2 

2 

Strate q
d = 1



Strate 0

Réseau parent

Réseau macle

Type I 

d

• d = 2 rationnelle

• K1 rationnel (close to d = 𝐆 𝐝)

 p = K2 = (d, l)  avec l = d K1

Type II 

K1

K’1

l

’2 

3. Maclage de déformation

n
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• Les macles de type I et II pour un même 

couple (K1, 2 ) sont dites conjuguées

• Elles ont toutes deux la même amplitude 

cisaillement 𝑠 =
𝑑

ℎ

• Les calculs des éléments de maclage     

(K1, 1, K2, 2) peuvent être réalisés avec 

des supercellules (supercells). Cette idée a 

été introduite par Friedel en 1904. Le 

volume de la supercellule divisé par le 

volume de la cellule unitaire est appelé 

Quelques remarques

Exemple de supercellule (u,v,w), q = 2

3. Maclage de déformation
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Friedel (1904) était intéressé par les macles de 

croissance dans les minéraux. Il existe de 

nombreuses phases en minéralogie, et certaines 

ont une métrique proche d’une phase de plus 

haute symétrie, par exemple une phase 

monoclinique avec   90° sera proche de la 

phase orthorhombique ( = 90°).

• Dans les minéraux ou les ferroélectriques les macles qui se forment ont toutes une 

faible obliquité (𝜃 < 5°), et donc une faible amplitude de cisaillement (s < 0.2).

• Les macles en métallurgie peuvent avoir des s > 0.2. Par exemple, les macles 

(111)<112> des fcc ou (112) <111> ont un s = 
2

2
 0,71.

n

K1 = (h k l) K1 = (h k l) 



d

h
2 2’

Les macles de type I déterminées par Friedel sont celles dont la normale au plan cristallin 

K1 = (h k l) est proche d’une direction rationnelle. Plus précisément lorsque 𝐧 = 𝐆−1𝐩 est 

un vecteur du réseau direct proche d’un vecteur à coordonnées entières, càd d’une 

direction cristalline 2. L’angle  entre les directions 𝐧 and 2 est appelé obliquité. 

3. Maclage de deformation/croissancePour info
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Bevis & Crocker (1968) ont établi des formules de calculs sur la base de 

l’équation C = T F  sachant que T doit être d’ordre deux, soit une rotation de 180°

ou un plan miroir. Pour les macles de type I, ils ont montré que:

𝑠2 = Tr 𝐂t𝐆 𝐂 𝐆−1 − dimAmplitude s

F = 𝐈 + 𝑠 ሚ𝐝 ෥𝐩t = 𝐈 + 𝑠 ሚ𝐝⊗ ෥𝐩
Matrice de 

cisaillement F

avec dim = 2 en 2D, ou 3 en 3D

ሚ𝐝 2 = ሚ𝐝t 𝐆෩𝐝 = 1

෥𝐩 2 = ෥𝐩t 𝐆∗ ෥𝐩 = 1

𝐆 = tenseur métrique
𝐆∗ = 𝐆−1

Si on connait la direction de cisaillement d dans l’espace direct, le plan de cisaillement p

dans l’espace réciproque, et l’amplitude s, alors la matrice de cisaillement F est donnée par :

L’amplitude de maclage s est donné par la matrice de correspondance C par:

3. Maclage de déformation

avec ෩𝐝 =
𝐝

𝐝t 𝐆 𝐝
et ෥𝐩 =

𝐩

𝐩t 𝐆∗𝐩
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F = 𝐈 + 𝑠 ሚ𝐝. ෥𝐩tVérifiez la formule

Le vecteur ෥𝐩 est le vecteur unitaire de 𝐩 ; ses coordonnées sont données dans 

l’espace réciproque. On peut noter pour être plus clair ෥𝐩 = ෥𝐧∗ avec ෥𝐧 le même 

vecteur unitaire mais écrit dans l’espace direct. 

෥𝐧 2 = ෥𝐧t𝐆 ෥𝐧 = 1 ෥𝐧 = [BB∗]෥𝐩 = 𝐆∗෥𝐩 = 𝐆−1෥𝐩

De plus:

 F ෥𝐧 = ෥𝐧 + s ሚ𝐝

 F peut s’écrire dans le repère 2D ሚ𝐝, ෥𝐧 par la matrice

s

෥𝐧

ሚ𝐝

෥𝐧’ = F෥𝐧

1

1

𝐅/ ሚ𝐝,෥𝐧 =
1 𝑠
0 1

• Det(F) = 1 (pas de changement de volume dans le maclage)

• Tr(F) = dim = 3 (cas réels)

• Valeurs propres de F = 1  (doublées)

• Vecteurs propres de F forment un espace de dim 2 = 𝐩

Propriétés

F ሚ𝐝 = ሚ𝐝 car ෥𝐩t ሚ𝐝 = 0, et en fait vrai pour tout vecteur appartenant au plan 𝐩

Note: 

3. Maclage de déformation
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Exemple P6m P6m

Contrainte de cisaillement simple 

Cristal parent

h

Cristal « maclé » 
(même si dans cet exemple la nouvelle orientation = l’initiale)

d

btwin

atwin

b

a

Note: Cette macle “iso-orientation” n’est qu’un cas purement théorique. Elle restaure le 
réseau cristallin dans son orientation initiale car le vecteur de déplacement est aussi 
un vecteur de Burgers d = b = a. 

b

• L’amplitude de cisaillement est s = d/h = a/h = 2/ 3

• Le tenseur métrique est G = 
1 −1/2

−1/2 1
dans le cas a = 1

• On vérifie qu’en effet s2 = Tr 𝐂t𝐆𝐂𝐆−1 − 2 = 4/3

a

3. Maclage de déformation
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Pour toute transformation displacive, nous avons

• Matrice de distorsion: F = 𝐚/𝛾
𝛾′

𝐛/𝛾
𝛾′

𝒄/𝛾
𝛾′

(active)

• Matrice d’orientation: T = 𝐚/𝛾
𝛼 𝐛/𝛾

𝛼 𝒄/𝛾
𝛼 (passive)

• Matrice de correspondance: C = 𝐚/𝛼
𝛾′

𝐛/𝛼
𝛾′

𝒄/𝛼
𝛾′

= T F (rationnelle)

Distorsionb

a

b’

a’
b𝛼

a𝛼

⟺

Le maclage mécanique peut être traité comme une transformation martensitique.

La théorie de Bevis & Crocker donne la valeur de l’amplitude de cisaillement s en 

fonction de la matrices de correspondance et du tenseur métrique. La matrice de 

distorsion peut être ensuite calculée directement avec la valeur de s, du plan et de 

la direction de cisaillement.  

Résumé

F




